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the Cholesky factor of R. This fast Kalman gain algorithm may be read out

of the LeRoux-Guesuen algorithm or out of the Friedlander algorithm.

1. Introduction

The Levinson recursions provide an efficient algorithm for factoring

the inverse of a Toeplitz correlation matrix I into its upper and lower

triangular Cholesky factors. These factors produce a Gram-Schmidt

orthogonalization of the underlying time series. The recursions are

routinely used to compute reflection coefficients for implementing whitening

and predicting filters in lattice form. They are also used to go back and

forth between reflection coefficients, order-increasing whiteners, and

correlations. In this paper we tell the dual of this story, based on a

factorization of the correlation matrix R, itself. One of our main purposes

is to show how the Levinson recursion for going back and forth between

correlations, reflection coefficients, and order-increasing whiteners may be

replaced with a dual set of recursions for going back and forth between

correlations, reflection coefficients, and order increasing synthesizers.

We use the Levinson recursions to derive the LeRoux-Gueguen algorithm

[1] for factoring a Toeplitz correlation matrix R, column-by-column. We

organize the algorithm into a coupled set of vector recursions and show that

it is, indeed, a lattice algorithm. By re-ordering the column variables

into rows, we convert the LeRoux-Gueguen algorithm into Friedlander's

lattice algorithm [2] for factoring a Toeplitz correlation matrix, row-by-

row. (Conversely, we could have re-ordered Friedlander's algorithm to

obtain the LeRoux-Gueguen algorithm.) This discussion shows the two

algorithms to be two different ways of looking at a fast Cholesky

factorization that is also called the Shur [3], Berlekamp-Massey [4], or



Abstract

We use the Levinson recursions to derive the LeRoux-Gueguen algorithm

for factoring a Toeplitz correlation matrix R, colum-by-column. We

organize the algorithm into a coupled set of vector recursions and show

that it is, indeed, a lattice algorithm. By re-ordering the column

variables into rows, we convert the LeRoux-Gueguen algorithm into

Friedlander's lattice algorithm for factoring a Toeplitz correlation matrix,

row-by-row. This shows the two algorithms to be different ways of looking

at a fast Cholesky factorization that is also called the Shur or Berlekamp-

Massey algorithm.

We review how fast Cholesky factorizations are usually used to compute

reflection coefficients from correlations. Then we show how the

factorizations may be run backwards to compute Cholesky factors and

correlations from reflection coefficients. This generalizes a result

usually attributed to Robinson and Treitel. One of our main purposes is to

emphasize that the Levinson recursions for going back and forth between

correlations, reflection coefficients, and autoregressive filter parameters

may be replaced with a dual set of recursions for going back and forth

between correlations, reflection coefficients, and moving average filter

parameters.

When the correlation matrix R describes an autoregressive moving

average time series, then each column of the Cholesky factor of R consists

of a p-dimensional Kalman gain vector in its first p non-zero entries,

followed by a homogeneous recursion for subsequent values. This means the

fast Cholesky factorization of R may be further speeded up by using these

Kalman gains to set initial conditions in a homogeneous recursion. It means

also that the Kalman gains obey the same vector recursions as the columns of

". "* . % ."



Morf [5] algorithm. When we run the recursion backwards to obtain Cholesky

factors and correlations from reflection coefficients we generalize the

result of Robinson and Treitel [6] for obtaining correlations from

reflection coefficients.

When the correlation matrix R describes an autoregressive moving

average (ARMA) time series, then each column of the Cholesky factor for R

- consists of a p-dimensional Kalman gain vector in its first p non-zero

entries, followed by a homogeneous recursion for subsequent values [7].

This means the fast Chclesky factorization of R may be further speeded up by

using these [alman gains, together with ARNA parameters, to set initial

. conditions and run a homogeneous recursion to generate columns [7]. It

* means also that the Kalman gains obey the same vector recursions as the

* columns, themselves [7], [8]. Thus the fast Kalman gains may be read out of

-the Leoux-Gueguen algorithm, or out of the Friedlander algorithm. by

reading internal variables out of a lattice. The algorithm may be slightly

modified to produce the Morf, Sidhu, Kailath algorithm [9] for computing

Kalman gains on a fixed length, time-varying lattice [11].

The diagram in Figure 1 summarizes our perspective and our results.

The right side of the diagram we take to be well understood: Levinson

recursions may be used to factor R71 and to go back and forth between

correlations (r 1, order increasing whiteners (an), prediction error
n

variances ( and reflection coefficients (kn). The left size of the

diagram we take to be less well understood and it is our intention to

clarify it and extend known results concerning it. To this end we show how

the Leoux-Gueguen and Friedlander algorithms may be used to factor R and to

go back and forth between correlations (rn, order increasing synthesizers

(hn], prediction error variances (an2), and reflection coefficients [kn).
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These results are used to speed up the Cholesky factorization in the ARMA

*case and to read the fast Kalman gain algorithm out of the factorization.

2. Linear Statistical Models for Stationary Sequences

Let x = (xo, x1 ..... t)' denote t real random variables drawn from a

wide sense stationary random sequence with mean value sequence zero and

correlation sequence (rt). The first two moments of x are

ExO

r0  r1  ...rt_ 1

r1  r0  r...rt-2

*, Exx' = R [ri. } "

rt_ 1 ... r1  r0

Call R a (txt) Toeplitz correlation matrix.

Define the exchange matrix 3:

1

3= 0 1 0
1

SJ. 33 = I

This matrix turns column vectors up-side down and row vectors right-side

left:

Jx = (xtl ,  X0

3'1 = (xt_1I .... x0 )

The vector x is drawn from a wide-sense stationary sequence that does not

know forward time from reverse time. Therefore 3x has the same moments as

-............... 1 •....



E.Tz 0

E.Jz(Jx)' = I.l R

This says R is not only Toeplitz, but also centro- or 3-symmetric.

2.1 Synthesis

The correlated vector x may be synthesized from an uncorrelated vector

m:

x = )HDu ; Euu' = I

The diagonal matrix De2and triangular matrix H are defined as follows:

|

2 = diag (2,2 2
D dig(op ri' t_ 1

00

h' 11 00

1 0

0 1 t-2 1 h h0  1 ht- i

t-1 t-2 - 1

hn =(1 h h )
1 l t-n-1

We call HD2H' a lower-upper (LU) Cholesky factorization of R and x = HDu a

forward synthesis of x.
I

The super and subscripting of elements in H is somewhat arbitrary, but

generally, h. tells how the random variable u. is used to build the random

*variable xi+ j .

The vector Ix may be synthesized as follows:

...



Ix = JHJTJDJJu

GCYu

R = GC2G'

The matrices G and C are defined as follows:

2 2 2 2
C - JDJ diag (at-i ...(oOl. a 0 )

h2 t-2 ht- Jh . " " k 3-kj-

G t- .'I .= - h0-ti 1 h

1 0

1 0

* 1

We call GC2G' an upper-lower (UL) Cholesky factorization of R and Jx GCTu

a backward synthesis of Jx.

2.2 Analysis

The random vector x may also be analyzed to produce the uncorrelated

random variables Du in a Gram-Schmidt procedure:

Ax -Du

ARA' = D2

- The triangular matrix A' is defined as follows:

0

M

S



1'a 1  2 at-1 0at-1
I  a2 Ja Ja .. Ja

1 2

A'#

n n an),a = 1 a, . " n

We call ARA' D2 an upper-lower Cholesky factorization and Ax = Du a

forward analysis or Gram-Schmidt orthogonalization of The first of these

interpretations comes from the following manipulation of = D2 :

(ARA')
1 = D-2

R71 = A'D-2A

n th n n nThe vector a is the n order whitener and the vector (a1, 2 ... an) is

the nth order predictor.

The vector Ix may be analyzed as follows:

JAJJx = JDJJu

BJi C.u

BRB' =C
2

The matrix B' is defined as follows:

t-10

1 0.

B' =JA'J

a t-1 1 t-1 1 0
t 1  1.1 a .. a a

We call BIB' = C2 a lower-upper Cholesky factorization of R71 and Bix = CJu

a backward analysis of Jx. The first of these interpretations comes from

the following manipulation of BRB' = C2 :

6



.
(BRB) 1  -2

R- 1 = B'C-2B

2.3 Summary

From these factorizations of R and R'-  we have these further

connections between analysis and synthesis parameters:

H = -  A' = H- 1 '

G = B
- 1  B' = G-

1 ,

The LU and UL factorizations of R may therefore be rearranged as follows:

RA' = HD
2

RlB' = GC2

These results for analysis and synthesis, and for factorization of R

and R- 1, are summarized in Figure 2. It is already obvious, and our fast

algorithms will confirm it, that H(G) and B'(A') play dual roles. This

* leads us to suspect that recursions for columns of B'(A') should lead to

similar recursions for columns of H(G).

0:

0

0

0

0
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Synthesis Analysis

= HDu Ax = Du

Forward R = Bl2H' (LU) R-1  = A'D- 2 A (UL)

RA' = m)2 R- R A'D 2

Jx GJ n Bx = CJu

Backward R = GC2G1 (UL) R71 = B'C-2B (LU)I

RB' = GC2  R 1G = B,C-2

H = JGJ (L) A' = JB'J (U)

Connections G = IHJ (U) B' = JA'J (L)

D = JCJ" D- 1  = 'C-1.

C = JDJ C71  = JD-1J
=- 1  A' 1 '

A'.. G =B - 1  B' =G - 1

Figure 2. Forward and Backward Analysis and Synthesis

-7!.
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3. Fast Algorithms

Begin with the correlation matrix R and the following rearrangements of

its UL and LU factors:

BA' = W

RB' = GC2

3.1 Levinson Recursions

Call Jan+1 the vector of non-zero elements in the (n+l) colu2m of A'and an +l the vector of non-zero elements in the (n+l) column of B', Aounting

from the right-most column of B'. Then, from the factorization above, we

have the relations

Sr r 1 ... rn+1  0

r Jan+l

r r

2
rn+l ... r, r n+l

r r ... rn+l 2
o 6U+1

ran+l 0

rl

•~~~ "nl ' r r6

Note what happens when Jan+l and an+1 are replaced by the previous

columns Jan and an:

* .. .



r r1 r. 0 n
o

0n+1

r 1 0

Ja n

0

r .. r r 2~
n+1 10 n

n
n n
Cn+1 ai rn+l- i

i=O

• 2

r 0 rl ... r n+ 2

n

r 1l n 0

00

*r 
0

r 0n

n+ 1 0o n+l

Choose Jfan+l and an +
l to be the following coupled recursions in order to

satisfy the factorizations:

"= L: + kn+1
0.

[n+1 1 10I o
+ aa

o2n kk

n n+1

S2+1 = (1- k2 +)a2

n n"P n

These are the celebrated Levinson recursions for sequentially building the

::S : , ;i- -: .- : :: - -. .. ..- ... .



whiteners an, or equivalently the columns of the A' and B' in the Cholesky

factorization of R7I .

Vectorized Form #1: These equations may be put into a concise matrix

form by defining the following matrices:

1 0 ... 0

1
10 0 1

0
0

1

0 . . . 0

JAI=fl 303-=A

Now the Levinson recursions are

a+1 A an + k 3 3an
- - n+1 -

n+1
Ians = lJan + k Aan

. A cross matrix representation for these recursions is

_n+1 Kn+l A an

J;"~ - K[~ J J A JJ an _ Kn+l al Jan
35n+1 n+1 AIa[~O~

.."nwhere the cross matrix + n+13 is defined as follows:

1. 0 kn+1

K n+-

0 0

k 1
n+1

k n+1  0 1

When the diagonals cross, the center term is (l+kn+l).

0.



This representation may be used over and over again to obtain the

iterated cross matrix recursion

n+1 Kn+I A Kn A . . . K2 A K A 1

where 1 is the lxl matrix equal to unity. The representation may also be

inverted to give a handy formula for running the Levinson recursions

backwards:

n -1 n+

The inverse is

1 0-k+

1k 
+

K-1 (1 k2  )-1 0
n+ = n+1

;Z-k

o 1

n+n

Of course k+ 1  an+1. In these recursions, an and jan are vectors of

increasing dimension.

q Vectorized Form #2: To obtain vectorized equations in which dimensions

are constant, let A denote a t-vector consisting of San, followed by zeros,

and let _n denote a t-vector consisting of an, followed by zeros:

4 
!"1 na n

" The vector An is the nth colum of A', but Bn is not the nth colun- of B'.

An # 3Bn

i

. ...
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The Levinson recursions produce the following recursions for An and Bn:

Bn+l n + kn+i T An

An+ l  T An + kn+1 B
n

The matrix T in these equations is a delay matrix:

0 . . . 0

1 0 ... 0

0 1

60 1 0,

*. This form of the Levinson recursions will simplify our discussion of fast

algorithms as lattice algorithms.

Remarks: 1. Given the reflection coefficients (kn  , the iterated

cross-matrix recursion may be used to generate all of the order

increasing whiteners an. This is equivalent to factoring R-1 .

2. Given a2 r0  and the reflection coefficients (k t} 1
00 ni1

- 2
prediction errors a may be generated recursively.

Sn

t+l t+l
3. Given the highest order whitener a , with kt+ l  a t+l, the

cross-matrix recursion may be used to generate all of the order-

@decreasing whiteners an, and all of the order-decreasing reflection

ncoefficients k n -a n .In this way lattice parameters are built from

0 filter coefficients. The stability of a filter built from a t+1 is

tested by checking for IknI < 1 for n-1,2,...,t-l. This is the Shur-

Cohn test.

0*



K2
4. The first row of the equation RA' ED2  gives the following

recursion for computing correlations from whitening filters:

n
r= 2 ~ ~n ir n  0  6 na r n i

i=1

These remarks, coupled with the Levinson recursions themselves,

complete the discussion of the right side of Figure 1.

3.2 LeRoux-Gueguen Algorithm

Return again to the following re-arrangement of the UL factorization of R:

RA' = HD
2

Write out the nth column of this equation:

r r. . r0 V n

r r. * r 2n 01 2' n+12
n

rt~r . . . rt _ h
t_1r t-1-nj

Ignore the zero terms in the right-hand column and write

rn r -1 r 0

* - nJ 2 n
r,+R r 1 -

* . n.

rI t'1 r " t'l-n ,

or

, ' 2 h n , ya n
n- n

A related vector, which will be needed in our development, is Rnan:

4 . . - + . - + ' . ' .,



I

r r . r r .. .r 0  I
n rn 1  0  0
r. Un+1 Rn  r 1l ru+ 1  r 0

n~

rt_ 1  . . . rrtl n J rt-l' .. r t-l-n r t-n- 2 J

50

a in] 2 ]
• n n An

The first term of in , denoted Sn0t is zero. Note the definition of Rn+l and

summarize these results as follows:

a 2h n  =R n

2n
a n R a n

n n

An +1 an
-n n n [

Vectorized Form #1: Our objective is to derive recursions for hn, in,

and a 2 . In the Appendix, the Levinson recursions for Ian are used to derive
U

the following results:

2 n+l 2 A' hn + 2 n

n+1 -n - n

2 n+1 2 0, 1n + k 2  A' hn

0 n+1 n n

2 2 2
an+ a n(1-k n).- n+1 n n +

S=_nd n
0 kn+ 2 element of X

2 0 20

0 _ (r , .. r ) 0 = (0, .....rt

0



2
a 2 r0 0

Because sn J 1hn , there is no handy cross-matrix representation.

Vectorized Form #2: Nov define Hn to be a t-vector consisting of

2n2 na hn , preceded by zeros, and Gn to be a t-vector consisting of an I

preceded by zeros:

_
n = 2 6n 2

n Ini - n Pn

The vector Rn is the nth column of H, but Gn is not the nth column of G.

On JJ Gn.

The LeRoux-Gueguen recursions may now be written

Gn+l = Gn + kn+l jTn

Hn+l = THn + k+ Gn

where T is still the delay matrix.

3.3 Summary

In order to emphasize the striking similarity in the Levinson-Durbin

and LeRoux-Gueguen algorithms, we say that they both obey the recursion

Un+l - U n + k,+l T n

Vn+l - TV+ + kn+1 Un

These equations are reversed (more on this in the next section) as

follows:

Un = un+l kn+l .-n

Vn+l TVn + kn+1 U n



The iteration for increasing order filters in the Levinson recursions is

obtained by setting initial conditions as follows:

Yo = Po =

The LeRoux-Gueguen algorithm is obtained by setting

_R0  = (rO, rj .... ort-1)'; Y0  = (Oor 1 ..... rt-1)'

In the LeRoux-Gueguen recursions, the variance and reflection

coefficients are obtained as follows:

2 = (n+l)st element of Vn

kn = -(n+2)nd element of Un/n 2

These recursions are discussed as vector recursions for a vector processing

machine in [10].

I



4. Lattice Implementations

Figure 3 contains four different lattice cells: (a) and (b) are un-

normalized and normalized forward lattice cells; (c) and (d) are un-

normalized and normalized inverse lattice cells. The equations implemented

by each of these cells are illustrated on the figure. The z- 1 operator is

interpreted as the delay matrix T when the cells map vectors Un and Vu into

vectors Un+l and Vn+l. When the vectors Un and Vn fill up sequentially in

time, the lattice cells see scalar sequences and the operator works just

like a scalar delay. When these cells are concatenated, then the lattice

structures of Figure 4 are constructed.

Denote the internal variables in the lattice as follows:
6n n

n n
Un n

n nu 1t-l ,Vt-1J
uu

In the forward (reverse) lattice, u. is the internal variable at the output1

n(input) of cell n at time i; v. is the input to cell n+1 at time i in both

lattices.

Think of the forward lattice as a linear transformation that maps the

input sequence U0 into the space-time sequence

0

-0
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Figure 4.
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00

u0

W=

ut- 1ut- 1 ,

while generating the interval variables Un and Vn. The space-time sequence

W contains upper lattice variable at cell n and time n for n=0,1,...,t-l.

Think of the inverse lattice as a linear transformation that maps W into u 0

while generating the internal variables Un and Vn .

4.1 Forward Lattice

The forward lattice may be used to (i) convert correlations frn 1

itl 2 t - i

into reflection coefficients ,kn0
- I variances n 0 , and 'impulse

responses' (hn) 0 in the factorization R2 HEDH', (ii) convert reflection
0

coefficients (kn)'- l into variances [ 0 and whiteners (a n in the

n1 int vaiacs1-

factorization R = AD 2 A' , and (iii) whiten correlated data (x0 to

obtain uncorrelated random variables in the analysis representation Du = Ax.

* The Levinson procedure is really a composite procedure consisting of (i) and

(ii) above.

* (i) Correlations to reflection coefficients, variances, and impulse

responses. When U0 and V0 are set with the initial conditions required in

the LeRoux-Gueguen algorithm then at the upper and lower branches of the

0 forward lattice one observes

-S _ , .' - - • . , .



2- . n = -n= n
n n

- - I ~nJ

Note that the non-zero entries in Vn that contain information about hn

-.. appear as trailing entries with delay n. This means the nt h cell need not

be switched into the lattice until time n. At this time the output g1-1 in1n-i

Un -' = Gn- 1  is available to compute k -$1 for use in cell n. In

summary, the correlation sequence (r0, r1, ... , rt_ 1 ) may be fed

sequentially into a forward lattice in which cells are computed and switched

* in sequentially to produce reflection coefficients, variances, and 'impulse

responses oh. The elements of I in the LeRoux-Gueguen algorithm

appear sequentially in time for all values of n less than or equal to the

current value of time. Thus the lattice procedure produces the Cholesky

factor H, row-by-row. This was Friedlander's insight. The procedure is

illustrated in Figure 5. Note that initial conditions are set to zero.

To complete the discussion, we note that one can stand at cell n and

observe the evolution of o2hn sequentially in time. This is a column-by-Z-

column procedure.

(ii) Reflection coefficients to variances and whiteners. When U0 = V0

= (1,0,...,0)', then at the upper and lower branches of the forward lattice,

one observes

S

0"

o , .
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00V
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This row is This column is

read out at time n. observed for sequential

evolution of h.
Figure 5.

Reading Cholesky Factors out of the lattice.
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If the lattice cells are wired together, as in Figure 4, then the entries in

SU0 = (1,0,...,0)' may be sent in sequentially and the entries in Un and Vn

- may be read out sequentially. This follows from the causal dependence of

Un+l and Vn+l on Un and Vn. Thus, given the reflection coefficients (kn)

required to build the lattice, an impulse may be sent in to generate order

increasing whiteners San which may be read out as leading entries of

Vn = An . They may be read out sequentially to produce the factorization R- 1

- AD 2A', row-by-row. But, as the whiteners an show up immediately as

leading entries of An in each lattice cell, the lattice cannot be

sequentially wired as in Figure 5. It must be completely wired from all of

t-1the reflection coefficients (kn )  . This is illustrated in Figure 6.

An alternative is to generate cells sequentially, and then after each

new cell is computed and switched into the lattice, compute the impulse

response of the new lattice. Each step of the procedure produces An = (Jan,

0)'. This composite procedure is, in fact, a Levinson-Durbin procedure.

(iii) Correlated data to uncorrelated data. If the forward lattice is

excited with correlated inputs (xO,xj,...,xt_1), then the variables observed

in Un are

0

0 ." -- . .:i - " " ' - "- . ' -i . " . ' "" .-: ,i -" "2 " '



01 1 1ka2 a 1-II t- .I

0 ak 1  a1 a 1

2

e

it-i1

o at zk

-ti

k 1  k2  kt_

a-ia-kanzk

0 1 2 nt-a 1 aI=k1 a 2=k 2 n kn a " t- k t-1

i a11 a t-I
0 a1 . t-2

t ai

e t-i

o 0 0 . 0 .

t-1*. .. a0  -
0

This row is read out L This column is observed
at time n. for sequential evolution of a

Fiaure 6.

Reflection Coefficients to Whiteners.
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I

The variable un is the nth entry in the vector Du:

Du - Ax

If the normalized forward lattice is excited with (xO.....xt-l), then the

n thvariable u n is the n entry in the vector u, itself. So, by reading out

411

6 + .+ : < ... -: +- .:



0 1 t-
time variables u 1  U 1  from the appropriate cells, at thet i m e ~ ~ v a i b e O  1  .. . t _ 1

appropriate times (in fact the time equals the cell number), we read out a

white sequence of uncorrelated random variables with normalized variances.

The same story holds for the unnormalized lattice, except now the variable

n n has variance 2. This Gram-Schmidt orthogonalization is illustrated
n n

in Figure 7.

4.2 Inverse Lattice

The inverse lattice may be used to (i) convert reflection coefficients

0-1 a 2 t-1 t1

(kt}  and variances [o) , into correlations r ) and 'impulsenn 0n nimpulse

n t-1 t-1
responses' (h ) 0  , (ii) convert the highest order whitener a into

reflection coefficients [k} , and lower order whiteners, and (iii) color

uncorrelated random variables Du to obtain correlated random variables in

the representation x = BDu.

(i) Reflection coefficients and variances to correlations and impulse

responses. From Figure 5 we see that initial conditions may be set to zero

and the correlation sequence may be sent into the lattice, to generate the

4 space-time vector

2
0

0

L0

This means initial conditions may be set in the inverse lattice in exactly

the same way they were set in the forward lattice, with ao2 at the input to

the first cell and zeros elsewhere, to produce an impulse response for

4 - - " " ' " " " " " "-. i . . . " i '. ' . ' - -. ...
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, Read variable u from cell n at time n.

x k k 2 i

Ficrure 7.

Whiteninq, Analysis or Gran-Schmidt orthoqonalization

* of correlated data.
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the inverse lattice which generates the internal variables Hn (0, hn)

t- 1
and the output sequence r . This generalizes the Robinson-Treitel

result, to include the generation of Cholesky factors as internal lattice

variables. It is illustrated in Figure 8.

(ii) Highest order whitener to reflection coefficients and lower order

whiteners. From Figure 6 we see that initial conditions may be set to zero,

and a 1 placed at the input to the first cell, to produce the order-

increasing whiteners an (or jan) as internal variables in the lattice. The

ouput of the (t-1)st cell contains Bt-1 = at-1 on the upper branch. This

means the initial conditions may be set to zero, and the sequence

(I, a 1 ... a t 1 ) sent into the inverse lattice to produce all of the

lower order whiteners as internal variables. The lattice must be fully

connected to achieve this. See Figure 9.

(iii) Uncorrelated data to correlated data. Recall Figure 7:

with initial conditions set to zero and the input equal to

(zoo xI ,.... X ), the uncorrelated random variables un are observed at cell
t-1 n

n at time n. Thus, an inverse lattice may be set with zero initial

0 1 n0 conditions and excited with uncorrelated random variables S, u I ... un ....

t-l
u t I , each entered at the appropriate time and place (cell n, time n), to

produce the correlated output (x0 , x,.... xt-l). This is illustrated in

0 Figure 10.

. .. .. 0

. ...0, • . . . . , ' , - . .
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Figure 9.

Generating low Order Whiteners from a High Order One.
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Colorinq or synthesis of correlated data.



5. Autoregressive Moving Average Sequences

So far we have dealt exclusively with a wide-sense stationary time

series (xn) whose correlation sequence (rn  is even and non-negative

t-1
definite. A finite record of the series (x}~ has a correlation matrix

R which is symmetric, Toeplitz, and non-negative definite. We now

specialize our results to the case where the correlation sequence obeys the

coupled autoregressive moving average (ARMA) recursions

p p
n rt-n n ht+n 0

n=O n=0

p

an h- = bt b0  0

n=0

Such a correlation sequence is said to be ARMA (pp).

Whenever these recursions hold for the correlation sequence, the

underlying time series itself is said to be ARMA (p,p). It obeys the

autoregressive moving average recursion

p p

a Xtn= but n

n=O a=O

4 (ut]: sequence of uncorrelation random variables with unit variance.

The operator or transfer function representation of xn) is

A(z)(xt) B(z) ut]

6



i-p P

A(z) a az; B(z) b z
A = n n
n=O n=0

This may also be written as an infinite moving average,

(xt) = H(z) (ut)

where the transfer function H(z) obeys the recursion

A(z)H(z) = B(z)

an ht-n b t
n=0

The spectrum R(z) = H(z)H(z-1 ) obeys the recursion

A(z)R(z) B(z)H(z-1 )

-pp

a n r t-n bn ht+n

n=O n=O

5.1 Stationary Wold Representation

The sequence Uxn) may be decomposed as follows:

A
xt = xt/tI + h0ut

A
xt/t I = (H(z) - ho)ut

= (B(z)/A(z) - ho}ut

This may be rewritten as
A

A(z) it/t- = (B(z) - A(z)h O ) (ut]
A

xt = xt/t_1 + h0 ut

Define the polynomials

z-lQ(z) = B(z) - h0 A(z)

z - 1 Pz) 1 - A(z)

The previous equations can then be re-cast as follows:

A A
xt+i/t = P(z) Zt/t I + Q(z)ut



A
xt xt/t_ 1 + h0 ut

A block diagram is illustrated in Figure 11. The variable Xtlt 1 is the

minimum mean-squared error prediction of xt based on the infinite past

•...u 1 ,  0 , . .... Ut-l)•

For this structure to be used as a synthesizer of a stationary time

series, the inputs ut must be initiated infinitely far in the past.

Alternatively, the initial conditions in the structure must be set

4 appropriately. This brings us to the Markovian representation.

5.2 Markovian Representation

The Markovian state space representation corresponding to the

stationary Wold representation is

t+ 1 =F x t + h ut

Xt= 't + h 0 ut

ut: sequence of uncorrelated, unit variance random variables

6 In this state space model, the vectors and matrices are defined as follows:

xt/t_ 1  1

* -xt = t1t-

At+pl/t 1  0

A

II t+p+1/t-li 0

0 1 0 . .. 0' hI "

F'- O h= h2
F 0 0 1 . .. h- 2

•1.

-aP . -1 hp
pa p



Ficqure 11.

Stationary Wold Representation.

Figrure 12.

Markovian State-Space Representation.



a1 1h 0' b
a a1 

h b

p p-i 1

The block diagram is illustrated in Figure 12.

The impulse response and correlation sequence for the Markovian

representation has to match that of the stationary Void representation. The

4 impulse response is

0, t< 0

h" hop tb=0

6 t- 1 h, t 0

The correlation sequence is

rt t  = §+ h 0 ht

(r. Q0 2 + h0 h2(%=6' %6+h 0
2)

o= FQF' + h h'

0 The matrix Q0 is the zero-lag state covariance:

QO = Exox0'

In order for this structure to synthesize a stationary sequence, the

initial condition x0 must be drawn from a distribution with mean zero and

covariance QO.

6 5.3 Innovations Representation

An innovations representation allows us to replace the constant vector

-o



h with a time-varying Kalman gain It, replace the random initial conditions

with zero initial conditions, and replace the unit variance input sequence

(un ) with a sequence (anUn ) whose varianct is time varying. The

representation is

It+, Fit + It at ut

it = ' t + ho at ut

ut: sequence of uncorrelated random variables with unit variance

This representation is illustrated in Figure 13.

For the innovations representation to produce a stationary sequence, we

require the correlation of (it) to be (r.. That is, we require

rn E x xt+n r

n t t nn

t .
The expression for r is

n

-6' Fn Qt § + ho §' Fn-i k 2

n  _ -t -t

where Qt is the zero-lag state covariance at time t for this to equal rt we

require

It at = -F(Qt-%) + h

2 +'
a2 = 6'(Q0 -Q )b = r 0 - 6' 6

t 0t- 0-

This is the usual Ricatti solution given for the Kalman gain kt

2
and innovations variance a t . But there is another way to go.

In the innovations representation, the output may be written as a time-

varying convolution of a time-varying impulse response with the input (un):



I0

k +'_tt I xt

Figure 13.

Innovations Representation.
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t

n0O

The impulse response is

0, t <n

n 0
h h 1 ,t n

t-n 0

-' t--

This means the vector of outputs z (10, xl, ...' xt-1)' may be written

010 h0  u

0j h 0  0 0
1 10

x h h1

0
xh0 b1 h tIa

h-i t-I t-2 0 1 t-I tI

or as follows.

h *.. .-

So, in fact, the time varying impulse response in the innovations

* representation just fills in the Cholesky factorization

R - HD2 '#

corresponding to the synthesis

z = Elf

Why is this important? Remember we have a fast algorithm for obtaining the



-W,

columns (or rows) of H. And, from the expression that relates the time

varying impulse response to the [alman gains we have the result

n n

hn

2

-n

hn
p

This means we can run a fast Cholesky algorithm (either by columns or rows)

and read out the Kalman gains kn as the entries h1 through hn This is a

fast Kalman gain algorithm. An attractive implementation uses the lattice

excited with a correlation sequence (rnt0 1 The gains are read out asn0 , h an r edota

internal lattice variables. This is illustrated in Figure 14. Of course

the gains kt inherit the same recursions as hn and &n in Chapter 4.

As the final topper to this story, note that the companion matrix F

satisfies its own characteristic equation:

n~p
S tnn+p-t

a tnF np= 0
-*! t-- n

t n

nThus the time varying-impulse response h tnobeys the following recursion:

n+p n+p n+p+l

t- -t n~~t a-n hpt+l = lt~ hn 0

t-n t-n t-n+l -
I

This means each column hn may be generated by computing the variance cr2, the

n

00



:_ ut-i

(r o r r i, . . . , r  t - ) k 1k 2k

* vt~

0

1

e2 k0

e 2 k 1  2

h0 2
p+1

h0 h

hp+2 p+l 22 kt 2h 't-t-k

4 2 2t-1

h -2

p+1

'~~ tq t - I

hti

I Figure 14.

Using the lattice to compute Kalman GainL.



T

Kalman gain kn' and then using the gain to initialize the recursion above to

n
fill out the colu-mns. The same recursions can be derived for [7]. This

leads to the Morf, Sidhu, Kailath recursions for kn [9].

6. Conclusions

- Our conclusions are much like our introductory comments. Forward and

inverse lattices may be used with a variety of excitations and initial

Sconditions to produce internal lattice variables which are Cholesky factors

of correlation matrices and their inverses. When the correlation matrix is

ARMA, then these internal variables may be used to generate Kalman gains and

to identify autoregressive parameters. The highest order Kalman gain may be

identified with a stationary impulse response to obtain an estimate of the

moving average coefficients.

In references [10] the vector recursions of Section 3.0 are presented

as algorithms that may be implemented on a vector processing machine. In

[11] a fixed length, time varying lattice is derived for implementing the

Morf, Sidhu, Kailath recursions.

0

0o

0'
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8. Appendix

Begin with the UL factorization of R:

RA° = HI
2

Write out the n th column of this equation:

0 r1 . .. r nim •+ n

r2 " rn+l 2

• " n

r • t z r i - c
0

' r ' O Ignore the zero terms in the right-hand column and write

r 1  1r! a n a2 hflr~n+l ."R l_ I an -h

or t- r t-i-n
or

2 n _ n
Soh = R Ja- n- n -

A related vector, is Rnan:

r n  r n-1  r , 0  "rn . . . r 0  x

r n+ R rl ru+l rI ro
n i0 n R

R- r1  l I rt1

n

-1 .. r.tr n  rt -n-2  I
00

.. o2 In 2 n



The first term of in denoted &no, is zero. Note the definition of R,+, and

summarize these results as follows:

a2 h = R Jan

n- n

a 2 1n R a n
rn n

n 0 a2 A + [ an]n R n an

n 2
Our objective is to derive recursions forh and an . To this end,

add one more row to the equation governing n2 h- n+
xi+1 -

rn+1 rn  r 0

n+ n+1 n+l

n 
jn+1

t + Ft rt- 1  rt-n-i

2 n+1 n+1 n+1 n+1
n+ t t n +  t-i n + t-n-I 0

Use the Levinson-Durbin recursion for Jan+:

I

rn rn r 0 
a j

n 0 l o
2 hn+ L '] +( 1 0
n+1  - = Rn+1 n+1

1 +1 r- rtt t rt -n-1

,,- .. . . ...-- .... ...... . .



I 1 n /a 2

n nt n

From this recursion we note the following recursion for a2:
n

2 2 (1-k An 2(1-k n

n+l = On (-n+l O n n+1 1

To obtain a recursion for &n , consider

a 2 n+1 1 n+l

n+= Rn+ a

Add one more row and use the Levinson-Durbin recursions to obtain

r n+1  r 0  0

S2 n+ 
n

n+ r R n+ r + kn+1 Jan

rt-1 rt-n-2  0

• n+1
mt  t  rt-n-11

a -- n ' + k~ a 2

n 1+ n
nL tl

2 nn



From this recursion we note

*In 
n

kn+1 -90 = -12

Substitute into the recursion for a to obtain

2 2 2
a n+l a n (1-k +1)

We may summarize the recursions as follows:

2 hn+ o2 h + k a 2

1 n+1 1  n /a 2n

00

1 n -k~~

2 n+l 2 n 2 
n+ 1 2 n 2 n+ln h

n+ n

TsIf we keep only the relevant terms, and use our previous definitions of

~A and 0 we may write

e

2 b+ 2 A' bn  k 2 a U°n+l - n - n+l n

2 n+1 2 n2 n

• n+1 n , g + kn+l an At-

These recursions are initialized as follows:



a hO (rO ... •r (O,r 1 .. '
00

a0 h _= ,.... rt 1.. r_

2G0 = ro
y0 r0
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